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Quantum Neural Nets
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The capacity of classical neurocomputers is limited by the number of classical
degrees of freedom, which is roughly proportional to the size of the computer. By
contrast, a hypothetical quantum neurocomputer can implement an exponentially
larger number of the degrees of freedom within the same size. In this paper an
attempt is made to reconcile the linear reversible structure of quantum evolution
with nonlinear irreversible dynamics for neural nets.

1. INTRODUCTION

The competition between digital and analog computers, i.e., between

computations and simulations, has a long history. During the last 50 years,

the theory of computation has been based, implicitly, upon classical physics

as idealized in the deterministic Turing machine model. However, despite
the many successes of digital computers, the existence of so-called hard

problems has revealed limitations on their capabilities, since the computa-

tional time for solving such problems grows exponentially with the size of

the problem.

It was well understood that one possible way to fight the ª curseº of the

combinatorial explosion is to enrich digital computers with analog devices.
In contradistinction to a digital computer, which performs operations on

numbers symbolizing an underlying physical process, an analog computer

processes information by exploiting physical phenomena directly. It is this

problem-solving via direct simulation that allows an analog approach to

reduce the complexity of the computations significantly. This idea was

stressed by Feynman (1982), who demonstrated that the problem of exponen-
tial complexity in terms of calculated probabilities can be reduced to a problem
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of polynomial complexity in terms of simulated probabilities. Conceptually,

a similar approach can be applied to the whole class of NP-complete problems.

Indeed, the theory of computational complexity is an attribute of the digital
approach to computations. At the same time, in principle, one can find such

a physical phenomenon whose mathematical description is equivalent to those

of a particular NP-complete problem. Then, incorporating this phenomenon

into an appropriate analog device, one can simulate the corresponding NP-

complete problem. But is it possible, in general, to find a new mathematical

formulation for any intractable problem in such a way that it becomes tracta-
ble? Some experts in computational complexity believe that, in the spirit of

the GoÈ del theorem, there always exist computational problems such that

every mathematical formulation that captures the essence of the problem is

intractable (Taub and Wozniakowski, 1992). At this step, we cannot prove

or disprove this statement.

There is another class of problems for which simulations are superior
over computations. In contradistinction to NP-complete problems, whose

complexity is in an exponentially large number of simple computations, these

problems have complex and sometimes partially unknown analytical structure.

Simulations of solutions to such problems are based upon a black-box

approach when unknown components of the model are found in the course of
a trial-and-error learning process. A typical representative of a corresponding

analog device implementing black-box-based simulations is a neurocomputer

where unknown (learnable) parameters are incorporated in the form of synap-

tic interconnections between dynamical units called ª neurons.º However,

usually analog computers are associated with certain limitations such as the

lack of universality, slow performance, and low accuracy, and this is the
price to be paid for certain advantages of simulations. A partial success in

development of a universal analog device is associated with neurocomputers

which are based upon massively parallel adaptive dynamical systems modeled

on the general features of biological neural networks that are intended to

interact with the object of the real world in the same way the biological systems

do. However, the capacity of the neurocomputers is roughly proportional to
the size of the apparatus, and that limits actual power significantly.

A second way to fight a curse of dimension is to utilize a nondeterministic

approach to computations. This approach is associated with the Monte Carlo

method introduced by N. C. Metropolis and S. M. Ulam in 1940. The idea

of this method is based upon the relationships between the probabilistic

characteristics of certain stochastic processes and solutions to some determin-
istic problems such as values of integrals, solutions to differential equations,

etc. The strength of the method is that its error does not depend on the

number of variables in the problem, and therefore, if applicable, it breaks

the curse of dimension. The effectiveness of the Monte Carlo approach is
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inversely proportional to the smoothness parameter that characterizes the

degree of correlation within the input data. However, the Monte Carlo method

is not the only way to apply nondeterminisism for computations. There is a
class of so-called randomized algorithms that are effective for combinatorial

problems. In general, a randomized strategy for this kind of problem is useful

when there are many ways in which an algorithm can proceed, but it is

difficult to determine a way that is guaranteed to be good. In particular, if

the benefits of good choices outweigh the costs of bad choices, a random

selection of good and bad choices can yield a good algorithm.
In general, the theory of computational complexity proves that polyno-

mial-time nondeterministic algorithms are more powerful than polynomial-

time deterministic ones. However, the main limitation of the whole nondeter-

ministic approach is in the generation of random numbers: the generators are

slow and not always reliable (i.e., the sequence of numbers that they produce

may harbor hidden correlations that no truly random sequence would possess).
That is why the concept of a quantum computer became so attractive: its

analog nature is based upon physical simulations of quantum probabilities,

and at the same time, it is universal (at least for modeling the physical world).

Although the development of the quantum mechanical device is still in

progress, a new quantum theory of computations has been founded (Deutsch,
1989; Lloyd, 1993; Williams and Clearwater, 1997). This theory suggests

that there is a second fundamental advantage of the hypothetical quantum

computer, which is based upon the wave properties of quantum probabilities:

a single quantum computer can follow many distinct computational paths all

at the same time and produce a final output depending on the interference

of all of them. This particular property opens up a new chain of algorithms
that solve in polynomial time such hard problems as factorization and discrete

log, i.e., the problems that are believed to be intractable on any classical

computer.

In order to clarify the connection between quantum algorithms and

combinatorial optimization, consider n binary variables x 5 x1, x2, . . . xn; xi

. . . P {0, 1}, and combine them into larger number of variables as all possible
products of n old variables:

y 5 x1 ^ x2 ^ ? ? ? ^ xn 5 x1 x2 ? ? ? xm, x2 x1 ? ? ? xm, etc.

The number of these new variables is N 5 2n. In many practical applications,

a function to be optimized is defined at a set of the new variables. For

instance, in the course of a spacecraft design, the optimal placement of sensors
requires minimizing the cost function, which depends upon 2n values of y,
since each of n assigned places can be equipped or not equipped by a sensor.

Since the number of possible assignments grows exponentially with the

number of placements, it appears that the time required to solve this problem
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must also grow exponentially (in the worse case) even if a single computation

of each of 2n values of the cost function is trivial. Actually, it is this property

which makes the problems of combinatorial optimization intractable by classi-
cal computing.

There is a striking similarity between the structure of combinatorial

problems and some special properties of quantum evolution, namely, the

property of direct product decompossibility. This property follows from the

fact that if two unitary matrices U1 and U2 are solutions to the SchroÈ dinger

equation, their tensor product U1 ^ U2 will be also a solution to it. Therefore,
with an input of n binary variables of the type x, one can obtain 2n variables

y as an output in one computational run. In other words, the transition from

n basic variables x to 2n combinatorial variables y is carried out by the

laws of nature, and that is the analog foundation of quantum computing.

Unfortunately, nature also imposes severe restrictions on the amount of infor-

mation that can be extracted from the superposition of y answers. In particular,
a direct measurement will yield only one answer, although more clever

measurement schemes can reveal certain joint properties of all the y answers.

The technique of quantum parallelism relies upon the use of the latter type

of measurements.

Actually the transition from x to y is carried out by n of 2 3 2 identity
matrices I (i) as follows:

yj1 ? ? ? jm 5 o I
(1)
j1i1

? ? ? I
(n)
jnin

xi1 ? ? ? in

Replacing identity matrices by nonidentical unitary matrices S (i), one finds

a new variable zj1 ? ? ? jn which is combined of weighted sums of all the compo-
nents of the variable y, and that is due to another fundamental property of

quantum mechanics: the interference of probabilities (which is postulated).

If the matrices S (i) are chosen such that the variable z is equal to the

cost function, then the computation is accomplished: the output contains all

the 2n values of the cost function. However, in order to find the optimal

value of the combinatorial variable y 5 yo, one has to impose an additional
constraint upon the matrices S (i), namely: the weight coefficient of yo must

dominate over other weight coefficients in order to detect this optimal value

in a few number of measurements, and this constraint is probably the toughest.

Hence, quantum computing does not allow iterations, feedbacks, or any other

types of control over the computational process: one must get the solution

at once, or not get it at all.
Thus, there are at least two areas where the quantum computer is expected

to be superior over the classical one: quantum mechanics (due to simulation

of quantum probabilities), and some specific combinatorial problems linked

to operation research (due to interference of quantum probabilities).
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In this paper an attempt is made to combine the power of quantum

computing and the dynamical complexity of neural nets. There are at least

three reasons for such combinations. First, it will represent a universal analog
device with a built-in random number generator. Second, its capacity will

be exponentially larger than those of a classical neurocomputer due to the

superposition and entanglement effects. Third, it will introduce iterations in

quantum computing.

The main challenge of the approach is in reconciliation of linear revers-

ible quantum evolution and nonlinear irreversible dynamics of neural nets.

2. NEURAL NET AS DYNAMICAL SYSTEM

A neural net as a nonlinear dissipative dynamical system can be repre-
sented by the following set of ordinary differential equations:

t ixÇ i 5 2 xi 1 s 1 o j
Tij xj 2 , t i . 0 (1)

where xi are state variables, or mean soma potentials, characterizing the

neuron activities, Tij are constant control parameters representing the weights

of synaptic interconnections, t i are suitable time constants, and s ( ? ) is a

sigmoid function having a saturated nonlinearity [usually s (x) 5 tanh b x,

where b 5 const . 0 is an additional control parameter].

An invariant characterizing the local dissipativity of the system (1) is
expressed explicitly via its parameters:

div xÇ 5 o
i

1

t i 1 2 1 1
b Tii

cosh2 o
j

Tij xj 2 (2)

A necessary (but not sufficient) condition that the system (1) has
attractors is that there are some domains in phase space where the invariant

(2) is negative.

If the matrix Tij is symmetric,

Tij 5 Tji (3)

then equation (1) can be represented in the form of a gradient system, and

therefore it can have only static attractors. In the basin of a static attractor,
the invariant (2) must be negative.

Since the system (1) is nonlinear, it can have more than one attractor;

consequently, in some domains of phase space, the invariant (2) may be

positive or zero.
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Equation (1) presents the neural net in its ª naturalº form in the sense that

xi and Tij correspond to physical parameters: neuron potentials and synaptic

interconnections, respectively. However, it is important to emphasize that the
relationship between the invariants of the ª vectorº xi and the ª tensorº Tij are

not preserved by the coordinate transformation, i.e., equation (1) does not

possess an invariant tensor structure. Consequently, the column xi and the

matrix Tij cannot be treated as a vector and tensor, respectively.

In most applications, e.g., pattern recognition, optimization, decision-

making, control, associative memory, and generalization, the neural net’ s
performance is associated with convergence to attractors. The locations of

attractors and their basins in phase space can be prescribed by an appropriate

choice of the synaptic weights Tij , i.e., by solving inverse dynamical problems.

However, since the dimensionality of neural nets is usually very high (in

biological systems it is of order of 1011 with the number of synaptic intercon-

nections of the order of 1015), the straightforward analytical approach can be
very expensive and time-consuming. An alternative way to select synaptic

weights in order to do specific tasks was borrowed from biological systems.

It is based upon iterative adjustments of Tij as a result of comparison of the

net output with known correct answers (supervised learning) or as a result

of creating of new categories from the correlations of the input data when
correct answers are not known (unsupervised learning). Actually the proce-

dure of learning is implemented by another dynamical system with the state

variables Tij which converges to certain attractors representing the desired

synaptic weights Tij .

Equation (1) represents a so-called continuously updated neural net. Its

discrete version is modeled by a corresponding contracting nonlinear map
whose dynamical behavior, in principle, is similar to that of equation (1). In

the simplest form such a map can be written in a McCulloch±Pitts form

(Hertz et al., 1991)

xi(t 1 1) 5 sgn o Tij xj (t) (4)

where the sign function (sgn) plays the role of the sigmoid s .

By replacing sgn in (4) with a stochastic rule

xi (t 1 1) 5 S o Tij xj (t) (5)

S 5 H 1 1 with probability f ( o Tij xj )

2 1 with probability 1 2 f ( o Tij xj )
(6)

one arrives at a stochastic version of neural nets, while the actual implementa-

tion of the stochastic rule (6) is still to be based upon a random number

generator.
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The basic limitation of deterministic or stochastic classical neurocomput-

ers is in their restricted capacity, which is proportional to the size of the

computer. This limitation becomes obvious when a neurocomputer is com-
pared with a human brain: there are 1011 parallel units in a human brain,

while neural chips made so far contain of the order of 104 units, which is

too few for most practical applications (Hertz et al., 1991).

3. QUANTUM MODEL OF EVOLUTION

A state of a quantum system is described by a special kind of time-

dependent vector | c & with complex components called amplitudes. It will

help to make the correspondence with Markov chains clearer if we define

this vector in bra form:

{a0a1 ? ? ? an} 5 ^ c | (7)

If unobserved, the amplitudes evolve in accordance with SchroÈ dinger ’ s
equation:

i "
dak

dt
5 o

l
Hkl al (8)

which is linear and reversible.

Here Hkl is the Hamiltonian of the system, i 5 ! 2 1 and " 5 1.0545

3 10 2 34 J s.

The solution to equation (8) can be written in the following form:

{a0(t), . . . , an(t)} 5 {a0(0), . . . , an(0)}U * (9)

where U is a unitary matrix uniquely defined by the Hamiltonian:

U 5 e 2 iHt/" , UU * 5 I (10)

After m equal time steps D t

{a0(m D t), . . . , an(m D t) 5 {a0(0), . . . , an(0)}U *
m

(11)

the transformation of the amplitudes formally looks like those of the transition

probabilities in Markov chains. However, there is a fundamental difference

between these two processes: in equation (11) the probabilities are represented
not by the amplitudes, but by squares of their modules:

P 5 {a0 | 2, . . . , | an | 2} (12)

and therefore the unitary matrix U is not a transition probability matrix.

It turns out that this difference is the source of so-called quantum

interference which makes quantum computing so attractive. Indeed, due to

the interference of quantum probabilities
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P 5 | a1 1 a2 | 2 Þ P1 1 P2 (13)

each element of a new vector ai (m D t) in equation (11) will appear with the

probability | ai | 2, which includes all the combinations of the amplitudes of

the previous vector.

4. QUANTUM COLLAPSE AND SIGMOID FUNCTION

As mentioned above, neural nets have two universal features: dissipati-

vity and nonlinearity. Due to dissipativity, a neural net can converge to an

attractor and this convergence is accompanied by a loss of information. But

such a loss is healthy: because of it, a neural net filters out insignificant

features of a pattern vector while preserving only the invariants which charac-

terize its belonging to a certain class of patterns. These invariants are stored
in the attractor, and therefore the process of convergence performs generaliza-

tion: two different patterns which have the same invariants will converge to

the same attractor. Obviously, this convergence is irreversible.

The nonlinearity increases the neural net capacity: it provides many

different attractors, including static, periodic, chaotic, and ergodic ones, and
that allows one to store simultaneously many different patterns.

Both dissipativity and nonlinearity are implemented in neural nets by

the sigmoid (or squashing) function discussed in Section 2. It is important

to emphasize that only the qualitative properties of the sigmoid function are

important for the neural net performance, but not the specific form of this

function. Can we find a qualitative analog of a sigmoid function in quantum
mechanics? Fortunately, yes: it is so-called quantum collapse, which occurs

as a result of quantum measurements. Indeed, the result of any quantum

measurement is always one of the eigenvalues of the operator corresponding

to the observable being measured. In other words, a measurement maps a

state vector of the amplitudes (7) into an eigenstate vector,

{a0a1, . . . , an} ® H 0, 0 ? ? ? 1
- i

? ? ? 0 0 J (14)

While the probability that this will be the ith eigenvector is

pi 5 | ai | 2 (15)

The operation (14) is nonlinear, dissipative, and irreversible, and it can

play the role of a natural ª quantumº sigmoid function.

5. QUANTUM NEURAL NET ARCHITECTURES

Let us introduce the following sequence of transformations for the state

vector (7):
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| c (0) & ® U | c (0) & ® s 1{U | c (0) & } 5 | c (t 1 1) & (16)

which is a formal representation of (14) with s 1 denoting a ª quantumº sigmoid

function. In order to continue this sequence, we have to reset the quantum

device considering the resulting eigenstate as a new input. Then we arrive

at the following neural net:

ai (t 1 1) 5 s 1{ o U ijaj (t)}, i 5 1, 2, . . . , n (17)

which has a form similar to that of (5).

However, there are two significant differences between the quantum

(17) and classical (5) neural nets. First, in equation (17) the randomness

appears in the form of quantum measurements as a result of the probabilistic
nature of the quantum mechanics, while in (5) a special device generating

random numbers is required. Second, if the dimension of the classical matrix

Tij is N 3 N, then within the same space one can arrange the unitary matrix

U (or the Hamiltonian H ) of dimension 2N 3 2N exploiting quantum direct

product decompossibility.

One should notice that each nondiagonal element of the matrix H may
consist of two independent components: real and imaginary. The only con-

straint imposed upon these elements is that H is the Hermitian matrix, i.e.,

Hij 5 H j i (18)

and therefore, the n 3 n Hermitian matrix has n2 independent components.
So far the architecture of the neural net (17) was based upon one

measurement per each run of the quantum device. However, in general, one

can repeat each run for l times (l # n), collecting l independent measurements.

Then, instead of the mapping (14), one arrives at the following best estimate

of the new state vector:

{a0, . . . , an} 5 H 0, . . . ,
1

! l
-
i1

, . . . , 0, . . . ,
1

! l
-
il

, . . .J (19)

while the probability that the new state vector has nonzero ikth component is

pik 5 | a ik | 2 (20)

Denoting the sigmoid function corresponding to the mapping (19) as s l , one
can rewrite equation (17) in the following form:

ai (t 1 1) 5 s l{Uij aj (t)} (21)

The next step in complexity of the quantum neural net architecture can
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be obtained if one introduces several quantum devices with synchronized

measurements and resets

a
(1)
i (t 1 1) 5 s l1l2{U

(1)
ij a

(1)
j (t)}, i 5 1, 2, . . . , n1 (22)

a
(2)
i (t 1 1) 5 s l2l1{U

(2)
ij a

(2)
j (t)}, i Þ 1, 2, . . . , n2 (23)

Here the sigmoid functions s l1l2 and s l2l1 map the state vectors into weighted

combinations of the measurements:

{a
(1)
1 ? ? ? a

(1)
n } ®

a 11a
(1)
l1 1 a 12a

(2)
l2

| s 11a
(1)
l1 1 a 12a

(2)
l2 |

(24)

{a
(2)
1 ? ? ? a

(2)
n } ®

a 21a
(1)
l1 1 a 22a

(2)
l2

| s 21a
(1)
l1 1 a 22a

(2)
l2 |

(25)

where a
(1)
l1 and a

(2)
l2 are the results of measurements presented in the form

(19), and a 11, a 12, a 21, and a 22 are constants.

Thus, (22) and (23) evolve independently during the quantum regime,

i.e., in between two consecutive measurements; however, during the measure-

ments and resets they are coupled via (24) and (25).

It is easy to calculate that the neural nets (17), (21) and (22), (23) operate
with patterns whose dimensions are n, n(n 2 1)(n 2 l), n1(n1 2 l1), and n2(n2

2 1) ? ? ? (n2 2 l2), respectively.

In a more general architecture, one can have k-parallel quantum devices

Ui with li consecutive measurements M i for each of them (i 5 1, 2, . . . , k);

see Fig. 1.

6. MAXIMUM LIKELIHOOD DYNAMICS

Let us turn to the simplest version of a quantum neural net (17). As

pointed out above, its performance is nondeterministic in a sense that each

Fig. 1. The k-parallel quantum neural network architecture.
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independent run of (17) may lead to a different trajectory. However, in order

to understand better the nonlinear structure of (17), we will introduce the

best estimate, or the maximum likelihood trajectory by replacing the highest
probability term in the output state by one. Choosing, for simplicity, a unitary

matrix with real components

U 5 1
0.858726 0.387195 2 0.17004 0.289405

0.179855 2 0.801066 0.0518717 0.568555

2 0.362639 0.144341 2 0.832118 0.394003

2 0.314219 0.433058 0.525334 0.661628 2 (26)

one can verify that any initial state which is sufficiently close to the state
{0001} will be attracted to it, and therefore the eigenstate {0001} is a static

attractor. In the same way one can find other static attractors, for instance,

{1000}, {0100}, {0010},
1

! 2
{1100}, etc. (27)

Another unitary matrix

U 5 5
2 0.377565 0.554112 2 0.741892

2 0.70484 0.347627 0.618349

2 0.600537 2 0.756383 2 0.259309 6 (28)

produces periodic attractors:

{100} ® {010} ® {001} ® {100} etc.

Thus, using relatively simple unitary matrices (26) and (28) within the

framework of the quantum neural net (17) or (21) allows one to store several

different patterns, namely static patterns and periodically oscillating patterns.

This means that in terms of the maximum likelihood dynamics, the quantum

neural net behaves as a typical nonlinear system. However, the maximum

likelihood dynamics cannot be identified with a deterministic dynamics.
Indeed, if one runs (21) several times, all the solutions may be different from

each other, so that with a small probability a pattern may converge to a

ª wrongº attractor; moreover, a pattern may wander among all five attractors

performing a new stochastic paradigm. Strictly speaking, such a ª leakº from

the deterministic performance of the maximum likelihood dynamics is a

source of errors in the performance of a neural net. However, in many cases
when a neural net is expected to display a certain flexibility by escaping a

prescribed paradigm, this leak may create a useful emergent behavior.

In order to evaluate deviations from the maximum likelihood solution,

one has to turn to the probabilistic description of equations (17) and (21).
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7. EVOLUTION OF PROBABILITIES

Let us take another look at equation (17). Actually it performs a mapping

of an ith eigenvector into a jth eigenvector:

{00 010
-
i

0} ® {00 010

-
j

0} (29)

The probability of the transition (29) is uniquely defined by the unitary

matrix U:

p
j
i 5 | Uj i | 2, o

n

i 5 1
p

j
i 5 1 (30)

and therefore the matrix | p
j
i | plays the role of the transition matrix in a

generalized random walk which is represented by the chain of mapping (29).

Thus, the probabilistic performance of equation (17) has remarkable

features: it is quantum (in a sense of the interference of probabilities) in
between two consecutive measurements, and it is classical in the description

of the sequence of mapping (29).

Applying the transition matrix (30) and starting, for example, with

eigenstate {10 ? ? ? 0}, one obtains the following sequence of the probabil-

ity vectors:

p 0 5 {10 ? ? ? 0}

p 1 5 {10 ? ? ? 0} 1 p1
1 ? ? ? pn

1

? ? ? ? ? ? ? ? ?
p1

n ? ? ? pn
n 2 5 { p 1

1, . . . , p 1
n} (31)

:

p m 5 {10 ? ? ? 0} 1 p1
1 ? ? ? pn

1

? ? ? ? ? ? ? ? ?
p1

n ? ? ? pn
n 2

m

An ith component of the vector p m, i.e., p i
m, expresses the probability that

the system is in the ith eigenstate after m steps.

As follows from equations (31), the evolution of probabilities is a linear

stochastic process, although each particular realization of the solution to
equation (17) evolves nonlinearly, and one such realization is the maximum

likelihood solution considered in the previous section. In this context, the

probability distribution over different particular realizations can be taken as

a measure of possible deviations from the best estimate solution.
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However, the stochastic process (31), as an ensemble of particular real-

izations, has its own invariant characteristics which can be expressed indepen-

dently on these realizations. One such characteristic is the probability f (m)
ij

that the transition from the eigenstate to the eigenstate j is performed in m
steps. This characteristic is expressed via the following recursive relationships

(Bartlett, 1956):

f
(1)
ij 5 p

(1)
ij 5 pij , f

(2)
ij 5 p

(2)
ij 2 f

(1)
ij pjj (32)

f
(m)
ij 5 p

(m)
ij 2 f

(1)
ij p

(n 2 1)
jj 2 f

(3)
ij p

(n 2 2)
jj ? ? ? 2 f

(n 2 1)
ij pjj

If

o
`

m 5 1

f
(m)
ij , 1 (33)

then the process initially in the eigenstate i may never reach the eigenstate

j. If

o
`

m 5 1
f

(m)
ii 5 1 (34)

then the ith eigenstate is a recurrent state, i.e., it can be visited more than

once. In particular, if

pii 5 1 (35)

then this recurrent state is an absorbing one: the process will never leave it

once it enters.

From the viewpoint of neural net performance, any absorbing state

represents a deterministic static attractor without a possibility of ª leaks.º In
this context, a recurrent, but not absorbing state can be associated with a

periodic or an aperiodic (chaotic) attractor. To be more precise, an eigenstate

I has a period t ( t . 1) if p
(m)
ii 5 0 whenever m is not divisible by t , and t

is the largest integer with this property. The eigenstate is aperiodic if

t 5 1 (36)

Another invariant characteristic which can be exploited for categoriza-

tion and generalization is reducibility, i.e., partitioning of the states of a

Markov chain into several disjoint classes in which motion is trapped. Indeed,
each hierarchy of such classes can be used as a set of filters which are passed

by a pattern before it arrives at the smallest irreducible class all of whose

states are recurrent.

For the purpose of evaluation of deviations (or ª leaksº ) from the maxi-

mum likelihood solution, long-run properties of the evolution of probabilities
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(31) are important. Some of these properties are known from the theory of

Markov chains, namely: for any irreducible ergodic Markov chain the limit

p
(m)
ij exists and it is independent of I, i.e.,

lim
m ® `

p
(m)
ij 5 p j (37)

while

p j . 0, p j 5 o
k

i 5 0

p i pij , j 5 0, 1, . . . , k; o
k

j 5 0

p j , p j 5
1

m jj

(38)

Here m jj is the expected recurrence time

m ii 5 1 1 o
l Þ j

pil m li , ` (39)

The definition of ergodicity of a Markov chain is based upon the conditions

for aperiodicity (36) and positive recurrence (39), while the condition for

irreducibility requires the existence of a value of m not dependent upon i
and j for which p

(m)
ij . 0 for i and j.

The convergence of the evolution (31) to a stationary stochastic process

suggests additional tools for information processing. Indeed, such a process

for n-dimensional eigenstates can be uniquely defined by n statistical invari-

ants (for instance, by the first n moments), which are calculated by summations

over time rather than over the ensemble, and for that a single run of the

neural net (17) is sufficient. Hence, triggered by a simple eigenstate, a stochas-
tic process prescribed by n-invariants can be retrieved and displayed for the

purposes of Monte Carlo computations, for modeling and predicting the

behavior of stochastic systems, etc.

8. INTERFERENCE OF PATTERNS

In the previous section we analyzed the simplest quantum neural net

(17), whose probabilistic performance was represented by a single-variable

stochastic process equivalent to generalized random walk. In this section we
turn to equation (21), which describes a multivariable stochastic process, and

start with the two-measurement architecture. Instead of (29), now we have

the following mapping:

1

! 2
{00...10

-
i1

...10
-
i2

...0} ®
1

! 2
{00...10

-
j1

...10
-
j2

...0} (40)

i.e.,
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I1 1 I2 ® J1 1 J2 (41)

where I2, I2, J1, and J2 are the eigenstates withthe unit 1 at the i1th, i2th,

j1th, and j2th places, respectively. Then the transitional probabilities of the

mappings are

p
j1
i1i2

(I1 1 I2 ® J1) 5
1

2
| J*1U(I1 1 I2) | 2 5

1

2
| U j1i1

1 Uj1i2
| 2 (42)

p
j2
i1i2

(I1 1 I2 ® J2) 5
1

2
| J*2U(I1 1 I2) | 5

1

2
| Uj2i1 1 Uj2i2 | 2 (43)

Since these mappings result from two independent measurements, the joint

transitional probability for the mapping (40) is

5 p
j1 j2
i1i2

(I1 1 I2 ® J1 1 J2) 5 p
j1
i1i2

p
j2
i1i2

5
1

4
| U j1i1

1 Uj1i2
| 2 | Uj2i1

1 Uj2i2
| 2 (44)

One can verify that

o
n

j 5 1
p

j
i1i2

5 1, o
n

j1 j2 5 j
p

j1 j2
i1i2

5 1 (45)

It should be emphasized that the input patterns I1 and I2 interfere, i.e., their

probabilities are added according to the quantum laws since they are subjected
to a unitary transformation in the quantum device. On the contrary, the output

patterns J1 and J2 do not interfere because they are obtained as a result of

two independent measurements.

As mentioned above, (44) expresses the joint transition probabilities for

two stochastic processes

I1 ® J1 and I2 ® J2 (46)

which are coupled via the quantum interference (42) and (43):

I1 1 I2 ® J1 1 J2 (47)

At the same time, each of the stochastic processes (46) considered separately

has transition probabilities from (30):

I1 1 I2 ® J1 1 J2 (48)

and by comparing (44) and (48), one can see the effect of quantum interference

for input patterns.

It is interesting to notice that although the probabilities in (44) and (48)

have a tensor structure, strictly speaking, they are not tensors. Indeed, if one
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maps the Hamiltonian H, and therefore the unitary matrix U, to a different

coordinate system, the transformations of the probabilities (44) and (48) will

be different from those required for tensors. Nevertheless, one can still for-
mally apply the chain rule for evolution of transitional probabilities, for

instance:

p
q1q2
i1i2

(I1 1 I2 ® J1 1 J2 ® Q1 1 Q2) 5 p
j1 j2
i1i2

p
q1q2
j1 j2

etc. (49)

Equations (44) and (49) are easily generalized to the case of l measurements

(l # n):

p
j1...jl
i1...il

5
1

ll &
l

a 5 1 Z o l

b 5 1
Uj a i b Z

2

, p
q1...ql
i1...i l

5 p
j1...jl
i1...i l

p
q1...q l
j1...jl

, etc. (50)

There are two ways in which many-measurement architecture can be

implemented: consecutive measurements applied to the same unitary matrix

(see Fig. 2), or by parallel measurements applied to several identical unitary

matrices. However, in the last case (see Fig. 1) one can introduce different

matrices U (1), . . . , U (l), and then equation (50) can be generalized to:

p
j1...jl
i1...il

5
1

ll &
l

a 5 1 Z o l

b 5 1

U
( a )
j a j b Z

2

(51)

Now the stochastic processes, in general, are correlated, and the existence

of their joint probability cannot be guaranteed (Zak, 1997).

Another useful change in the quantum net architecture based upon pattern

interference is the following: assume that the result of the measurement, i.e.,

a unit vector

am(t) 5 H 00...010

-
i

...0 J (52)

is combined with an arbitrary complex vector m:

m 5 {m1 ... mn} (53)

such that

a(t) 5 [am(t) 1 m]c, c 5
1

m2
1 1 ... (mi 1 1)2 1 ... m2

n

(54)

Then the transition probability matrix changes from (30) to

Fig. 2. The QNN for generating a one-dimensional stochastic attractor.
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p j
i 5

[U j1m1 1 ... Uj i(mi 1 1) 1 ... Uj nmn]
2

m2
1 1 ... (mi 1 1)2 1 ... m2

n
(55)

Thus, now the structure of the transition probability matrix p j
i can be controlled

by the interference vector m.

Equation (55) is derived for a one-dimensional stochastic process, but

its generalization to the l-dimensional case is straightforward.
In order to clarify the more complex architectures of quantum neural

nets, for instance, such as those given by (21), turn to (44), and consider the

tensor p
j1j2
i1i2

. By simple manipulation of indices one obtains

p
j1j2
i1i2

p j1
p j2

5 p i1
p i2

(56)

The products p j1
p j2

and p i1
p i2

represent the components of the direct product

of two vectors p 1 ^ p 2 and therefore equation (56) can be rewritten as

[ p 1 ^ p 2]t 1 t 5 p12[ p 1 ^ p 2]t (57)

where p12 is a tensor with the components p
j1 jl
i2i2

, and p 1 p 2 represents the

probability vectors for two different stochastic processes coupled via quantum

interference [see equation (44)].

In order to understand the physical meaning of equation (57), start with
a simpler case when two stochastic processes p 1 p 2 are considered separately.

Then each vector evolves according to the following equation:

p 1(t 1 t ) 5 p
j
i p j (t) (58)

Moreover, if these processes are coupled in a ª quantumº sense, one arrives

at a simultaneous system:

p (1)
i (t 1 t ) 5 p

j1
i1
p j1

(t) (59)

p (2)
i (t 1 t ) 5 p

j2
i2
p j2

(t) (60)

Obviously, the vectors p 1 and p 2 now represent the conditional probabilities.

Thus, due to the quantum interference, the stochastic vectors p 1 (given

p 2) and p 2 (given p 1) are correlated. Their direct product p 1 ^ p 2, which
can be associated with the joint probability, evolves linearly according to

equation (57). [We should notice again that for more complex architectures

of the type (51), the joint probability may not exist.]

Equation (57) can be generalized for l-measurement architectures:

[ p 1 ^ p 2 ^ ? ? ? ^ p l]t 1 t 5 p12...l[ p 1 ^ p 2 ^ ? ? ? ^ p l]t (61)

9. NON-MARKOVIAN AND NONLINEAR PROCESSES

The quantum neural nets (17) and (21), with a slight modification, can

generate non-Markovian processes which are ª more deterministicº because
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of higher correlations between values of the vector ai at different times, i.e.,

between ai(t), ai(t 2 t ), ai(t 2 2 t ), etc.

Indeed, let us assume that each new measurement is combined with the
l previous measurements (instead of l repeated measurements). Then equation

(50) will express the joint distribution of ai(t), ai(t 2 t ), . . . , etc.

The evolution of these probabilities is described by an equation following

from (61):

p (t) ^ p (t 2 t ) ^ ? ? ? ^ p (t 2 l t )

5 p12...l{ p 1(t 2 t ) ^ ? ? ? ^ p [t 2 (l 1 t) t ] (62)

Thus, instead of an l-dimensional Markov process in (61), now we have a

one-dimensional non-Markovian process of the lth order.

By combining l1 new measurements with l2 previous measurements, one

can generate an l1-dimensional non-Markovian process of the l2th order.
So far all the stochastic processes considered above were linear. Now

let us assume that along with equation (17), which is implemented by a

quantum device, we implement (in a classical way) the associated probability

equation (58). At this point these two equations are not coupled yet. Now

turning to equation (58)±(56), assume that the role of the interference vector

m is played by the probability vector p . Then equations (17) and (58) take
the form

ai(t 1 1) 5 s 1 H o j
Uijai(t) J (63)

p i(t 1 1) 5 o p
j
i p j (t) (64)

where

ai(t) 5 F H 00...010

-
i

...0 J 1 { p 1 p 2... p n} G C (65)

C 5
1

p 2
1 1 ... ( p i 1 1)2 1 p 2

n

(66)

p
j
i 5

[Uj1 p 1 1 ... Uji
( p i 1 1) 1 ... Ujn

p n]
2

p 2
1 1 ... ( p i 1 1)2 1 ... p 2

n

(67)

and they are coupled. Moreover, the probability evolution (64) becomes

nonlinear since the matrix p
j
i depends upon the probability vector p .
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10. APPLICATIONS OF QUANTUM NEURAL NETS

There are two broad areas in which classical neural nets become very
effective: associative memory and optimization. In this section we will analyze

what additional advantages can be expected from a quantum implementation

of neural nets.

The problem of associative memory is formulated as following: store a

set of q n-dimensional patterns j h
i ( h 5 1, 2, . . . q; i 5 1, 2, . . . n) as a

dynamical attractor; if a new pattern j i presented as an input is sufficiently
close to a particular pattern j h

i , i.e., it belongs to the basin of the corresponding

attractor, it will trigger a dynamical process which eventually converges to

the sample pattern j m
i . From the viewpoint of information processing, such

a convergence can be interpreted not only as associative memory, but also

as pattern recognition, identification, classification, etc. However, the most

important part of this process, which distinguishes neural nets from other
computational tools, is generalization. Indeed, the convergence of the solution

to an attractor is a dissipative process: it is accompanied by the loss of

(unnecessary) information. Only invariants which characterize the belonging

of a pattern to a certain class survives this loss, and they are represented by

the attractor.
The fundamental problem in associative memory is to find such a synap-

tic interconnections Tij [see equation (1)] or, in case of a quantum implementa-

tion, the Hamiltonian H, which provides a prescribed number of attractors

of certain type and at certain locations.

In optimization performance the problem is inverse: the matrix Tij (or

Hij ) is given, and the neural net must converge to an attractor which represent
a minimum to a certain function (or functional) formulated in terms of the

matrices Tij or Hij .

There are several advantages which can be expected from quantum

implementation of neural nets. First, since the dimension of the unitary matrix

n can be exponentially larger within the same space had it been implemented

by a quantum device, the capacity of quantum neural nets in terms of the
number of patterns stored as well as their dimensions can be exponentially

larger, too.

Second, quantum neural nets have a new class of attractors representing

different stochastic processes, which in terms of associated memory, can store

complex behaviors of biological and engineering systems, or in terms of

optimization, to minimize a functional whose formulation includes statisti-
cal invariants.

But the most remarkable property of quantum neural nets is associated

with pattern interference. Indeed, let us assume that we store letters of the

alphabet in the form of the corresponding stochastic attractors j h . Then if



670 Zak and Williams

some of these letters, say j h 1, . . . , j h l, are presented to the neural net simulta-

neously, their processing will be accompanied by quantum interference in

such a way that they will converge to a new attractor, say j 1,2... l. This new
attractor preserves the identities of the letters j h 1, . . . , j h l, but at the same

time, it is not a simple sum of these letters. Moreover, any additional letter

j h l 1 1 will create a totally different new attractor j 1...e,l 1 1. Actually, this phenom-

enon is similar to the formation of words from letters, sentences from words,

etc. In other words, the pattern interference creates a grammar by giving

different meanings to different combinations of letters. However, although
this grammar is imposed by natural laws of quantum mechanics, it can

be changed. Indeed, by changing the phases of the components Hij of the

Hamiltonian, one changes the way in which the patterns interfere and therefore

ª Englishº grammar can be transformed into ª Frenchº grammar.

10.1. Learning

In order to achieve a required performance of a neural net, one has to

assign appropriate values to the synaptic weights Tij , i.e., to solve an inverse
problem for equation (1). Since the number of weights can be enormously

large, in classical neural nets analytical inversion is replaced by an equivalent

dynamical procedure called learning.

In order to illustrate how learning can be applied to a quantum neural

net, let us turn to the simplest case (17), and rewrite equation (31) for

probability evolution in the form

{ p m
(1) ... p m

(n)} 5 { p 0
(1) ... p 0

n} 1 p1
1 ? ? ? pn

1

p 1
n ? ? ? p n

n 2 (68)

where p 0
(i) and p m

(i) are the components of the input and output vectors,
respectively, and m is the number of computational steps.

Let us require that in response to the probabilistic input p 0
(i), the quantum

neural net must converge to a stationary stochastic process with the probability

distribution p m
(i). Moreover, assume that there are n different input vectors

p m
(ij). Then equation (51) can be presented in the following matrix form:

1
p m

11 ? ? ? p m
(1n)

? ? ? ? ? ? ? ? ?
p m

(n1) ? ? ? p m
nn 2 5 1

p1
1 ? ? ? pn

1

? ? ? ? ? ? ? ? ?
p1

n ? ? ? p n
n 2

m

1
p 0

(11) ? ? ? p 0
(1n)

? ? ? ? ? ? ? ? ?
p 0

(n1) ? ? ? p 0
(nn) 2 (69)

whence by inversion
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1
p1

1 ? ? ? p n
1

? ? ? ? ? ? ? ? ?
p1

n ? ? ? pn
n 2

5 lim
m ® ` 3 1

p m
(11) ? ? ? p m

(1n)

? ? ? ? ? ? ? ? ?
p m

(n1) ? ? ? p m
(nn) 2

m

1
p 0

(11) ? ? ? p 0
(1n)

? ? ? ? ? ? ? ? ?
p 0

(n1) ? ? ? p 0
(nn) 2

2 1

4
1/m

(70)

Equation (70) defines the sought transition matrix only when the limit exists,
i.e., when the corresponding Markov chain is irreducible and ergodic. The

last two requirements impose some constraints upon the input±output relation-

ships in equation (69). For the purpose of illustration of the learning strategy,

we will assume that the input-output relationships are assigned in such a way

that these constraints are already satisfied, and therefore equation (70) presents

a unique solution to the problem of finding the transition matrix for the
prescribed performance of the neural net.

Now invoking equation (30), one finds all the elements of the correspond-

ing unitary matrix U ij to the accuracy of the phases, which can be set up

arbitrarily. It should be noticed that the phase invariance of the unitary matrix

is not the rule: it is a result of simplicity of the chosen neural net. Indeed,

in case (21) the relationships between the transitional probabilities and the
elements of the unitary matrix include phases [see equation (44)].

Thus, the assignments for the elements of the unitary matrix were found

in analytical form, and in a relatively simple way. Unfortunately, it is still

not very useful. Indeed, even in classical neural nets the number of synaptic

weights is so large that their programming based upon analytically found
values is unthinkable. That is why such a programming is replaced by learning

based upon dynamical convergence of synaptic weights to the correct values.

First we would like to introduce a surprisingly simple way to generate a

sufficiently rich set of unitary matrices out of a change of only one parameter:

the time t between two consecutive resets.

Let us start with equation (10), and rewrite it for the unitary matrix at
the end of the simple quantum computation period t applying the Sylves-

ter decomposition:

U ( t ) 5 eiH t / " 5 o
n

k 5 1

ei l k t / "
&
j Þ k

(H 2 l j I )

&
j Þ k

( l k 2 l j )
(71)

where H is the Hamiltonian of the quantum system, and l j ( j 5 1, 2, . . . ,

n) are its eigenvalues, while

Im l j 5 0, l j Þ l l if j Þ l (72)

As follows from equation (71), each component of the unitary matrix U t for
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any fixed Hamiltonian is a sum of n periodic functions with periods 2 p / l k t .

If the eigenvalues l j are not commensurate, the behavior of the unitary matrix

U t as a function of t will be ergodic, i.e., this matrix eventually will take
all possible values which result from all the possible combinations of its n
eigenvalues exp(i l j t / " ). In other words, with no changes in the Hamiltonian

H, one can arrange a set of unitary matrices which are equivalent to those

obtained from variations of n independent parameters.

In order to find the optimal period t , start with the following Liapu-

nov function:

L 5
1

2 o
n

i, j 5 1

(p j
i 2 | U ji | 2)2 (73)

Comparing equations (73) and (30), one find that equation (30) is satisfied

when L has its minimum. The dynamical system which converges to this

minimum can be written in the form

d t
dt

5 2
- L

- t
5 o

n

i, j 5 1

(p j
i 2 | Uji | 2)

- | U ji | 2

- t
(74)

In equations (56) and (57), the parameters p j
i are obtained from equation

(53). The explicit expressions for | U ji( t ) | 2 and - | U ji | 2/ - t can be found from
equation (71).

It should be noticed that the Liapunov function (73) is not quadratic

with respect to the sought parameter t , and therefore it can have more

than one minimum. However, for a one-dimensional case, finding a global

minimum is not a hard problem.

In order to utilize the full capacity of quantum neural nets, in addition
to optimal t , one has to find and implement optimal orientation of the

Hamiltonian, and that may be costly. However, quantum interference offers

an alternative way for learning that complements the approach described

above without changing the Hamiltonian itself. Indeed, let us turn to the

paradigm described by equations (52)±(55). As follows from equation (55),

one can choose an interference vector m to incorporate 2n 2 1 additional
free parameters into the transition probability matrix p j

i, which thereby will

have total of 3n 2 1 parameters. Now one has to choose these parameters

such that the stochastic process will converge to a prescribed limit probability

distribution p *.

The actual way to do this is the following. If p * is the limit probability

distribution, then the following equations must be satisfied:

o
n

j 2 1

p
j
i p *j 5 p *i , o

n

i 5 1

p *i 5 1, o
n

j 5 1

p
j
i 5 1 (75)

Since the prescribed probability vector p * must be normalized, the
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matrix p
j
i defined by equation (55) is normalized in advance, and the first

constraint in (75) is satisfied. But since the vector (52) is also normalized

as well, therefore the second constraint in (75) is satisfied, too. But then it
follows from (75) that

o
n

j 5 1
o
n

i 5 1

p
j
i p *j [ o

n

i 5 1

p *i 5 1 (76)

i.e., the number of independent equations in the system (75) is n 2 1.

Thus, only n 2 1 constraints are imposed upon 3n 2 1 free parameters
of the transition probability matrix p

j
i(mk, U a b ).

This redundancy can be exploited in several ways. First, one can mini-

mize the time of convergence to the stochastic attractor by maximizing

the determinant

max | det( p
j
i 2 d j

i) | (77)

subject to the unilateral constraint

p j
i $ 0 (78)

Here d j
i is the Kronecker delta.

Second, one can exploit the direct product decompossibility by pre-

senting the original n 3 n unitary matrix as a tensor product of q 2 3
2 matrices:

U 5 U1 ^ U2 ^ ? ? ? ^ Uq (79)

The interference vector can be presented in the same way:

m 5 m1 ^ m2 ^ ? ? ? ^ mq (80)

while

n 5 2q (81)

Then the total number of free parameters in the matrix p
j
i is 5q, i.e., 5 log2n.

Therefore, the limit stochastic process p * can be approximated to an accuracy
of 5 log2n parameters out of a total of n 2 1 parameters required for its full

description. For many practical cases such an approximation is sufficient.

Due to the direct product effects (79) and (80), this approximation is achieved

by means of exponentially smaller resources.

Of course the price we pay for using unitary matrices and initial state

vectors that have a direct product structure is that we exclude the majority
of possibilities (i.e., arbitrary unitary matrices and arbitrary entangled states).

However, there is a sound pragmatic reason for focusing on objects which have

a direct product structure: they will probably be much simpler to implement

physically and yet still give acceptable approximations to the ideal behavior.
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Nevertheless, if efficient technologies can be developed that can actually

create arbitrary unitary operators and arbitrary states, then our model will be

applicable to these systems, too.
The actual learning procedure, i.e., finding the interference m-vector

from prescribed probability distribution p * (at a fixed unitary matrix U ) can

be based upon the gradient descend procedure well established in the theory

of neural nets:

Start with the ª energyº function to be minimized:

E 5 1±2 [( p1
2 p *1 1 ... pn

2 p *n 2 p *2 )2 1 ? ? ? (82)

1 ( p1
n p *1 1 ? ? ? 1 pn

n p *n )2] ® min

Then the interference vector mi is found as the static attractor of the follow-

ing system:

dmi

dt
5 2

- E

- p j
i

- p j
i

- mi

(83)

while the derivatives - p j
i / - mi are found from (55). Since (82) plays the role

of a Liapunov function, a solution to equation (83) always exists (but it

can be nonunique). Thus, quantum learning is based upon two fundamental
quantum effects: entanglement and interference. Due to entanglement, any

prescribed stochastic attractor can be approximated with a sufficient accuracy

by means of exponentially smaller resources. Due to interference, each initial

vector ª mixedº with the corresponding interference vector triggers a stochastic

process which converges to a prescribed probability distribution. (It should

be recalled that without such an interference, all initial vectors would converge
to the same stochastic attractor because the governing equations for the

probabilities are linear).

10.2. Associative Memory

Quantum learning opens up a very simple way for implementation of

associative memory, as well as of pattern recognition and classification.

Indeed, consider equations (75) which relate the interference vector m and

the limit probability distribution p *, and require that

p *i 5 0 if i , i1 or i . i2, i2 . i1 (84)

This means that the stochastic process with the probability 1 will approach

a selected domain in between i1 and i2. The number of constraints imposed

by (84) upon the interference vector m is

g 5 i1 1 i2 , n (85)

where n is the dimensionality of p *.
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Therefore, there exists a (2n 2 1 2 g )-parameter family of vectors m
which belongs to the domain (84) in the sense that each stochastic process

triggered by a unit vector ª mixedº with the interference vector m from this
family will converge to the domain (84).

Thus, solution of equations (75) subject to the constraints (84) establishes

a correspondence between the class of patterns (represented by the family

of m-vectors) and the domains in the n-dimensional space to which the

stochastic processes (triggered by m-vectors) converge. This procedure can

be exploited for associative memory, pattern recognition, and categorization.

10.3. Optimization

As mentioned earlier, neural networks are expected to solve some optimi-

zation problems by finding a configuration which minimizes some functional

usually referred to as an energy function.
In order to find an energy function which is minimized by the simplest

neural net (17), consider the corresponding evolution of probability (31):

p i(t 1 t ) 5 o p
j
i p j (t) (86)

where p
j
i is expressed by (30), and t is the period of one iteration.

The solution to equation (86) is stable if

| l i | # 1 (87)

where l i are the characteristic roots of the transitional probability matrix

|p
j
i | .

In order to prove (87), consider the second norm of the matrix |p
j
i | :

| p
j
i | 5 max

j o
n

i 5 1

| p
j
i | 5 1 (88)

Hence

max
i

| l i | # | p
j
i | 2 5 1 (89)

Assuming that t is sufficiently small in the sense that

p 1(t 1 t ) 2 p i (t) 5
d p i

dt
t (90)

rewrite equation (86) as

d p i

dt
5 bij p j , where bij 5 ( p

j
i 2 d ij ) (91)

or in a more general form
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d p i

dt
5 bij p j 1 g 1 1 2 o

n

i 5 1

p i 2 (92)

where g is an arbitrary multiplier.

Equation (92) is equivalent to equation (91) because the expression in

the brackets is zero [see (30)].

If the matrix | bij | is symmetric,

bij 5 bj i (93)

one can find such a quadratic form (with respect to the variables p 1) that

equation (92) is a gradient system for it. Indeed, consider a quadratic form

Eo 5
1

2 o
n

i, j 5 1

bij p i p j (94)

which is supposed to be minimized subject to the following constraint:

o
n

i 5 1

p i 5 1 (95)

In other words, one has to find an unconstrained minimum for the function

E 5
1

2 o
n

i, j 5 1

bij p i p j 1
g
2 1 1 2 o

n

i 5 1

p i 2
2

® min (96)

The conditions for the minimum are

- E

- pi

5 b ij p j 1 g 1 1 2 o
n

i 5 1

p i 2 5 0 (97)

b11 . 0, Z b11 b12

b12 b22 Z . 0, . . . , det | bij | . 0 (98)

But the solution (97) is a dynamical attractor for the system of differential

equations (92): indeed, the system is stable [because of the inequalities (98)],

and it has only one attractor (97). One can also verify that (96) plays the

role of a Liapunov function for the system (92).

Thus, the quantum neural net (17) minimizes the quadratic functional

(94) subject to the constraints (95). This minimization should be understood
in the following way: The solution to (17) converges to a stationary (ergodic)

stochastic process which uniquely defines the probability vector

p 1 5 lim
t ® `

p i (t) (99)

i.e., the solution to the problem.
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One should note that the computational problem (94), (95) is posed in

such a way that it has some specific features, namely the coefficients bij of

the quadratic form must satisfy

o
n

j 5 1
bij 5 0 (100)

which follows from (30) and (91).
Actually, (100) enforces the constraints (95) automatically if the initial

vector p i(0) satisfies them, i.e., if

o
n

i 5 1

p i(0) 5 1 (101)

Obviously, the constraints (100) restrict the class of computational problems

which can be solved by the quantum neural net (17). However, if we move

to more complex architectures [see (21)±(23)], the restriction (100) can be

eliminated. Moreover, even slight changes in the simplest architecture (17)
can do it. Indeed, so far the reset values of the probability vector were

identical to its measurement values. Let us now assume that no matter what

the measurements are, the last component of the reset vector is always zero.

In other words, we have created a leak of probability. Then instead of the

constraint (95) one has

o
n

i 5 1
p i , 1 (102)

and the restriction (100) can be dropped.
It should be noticed that the inequalities (98) do not restrict a computa-

tional problem since they must be satisfied for any problem which is expected

to have a minimum. At first sight, the problem which has been discussed

above is one of the simplest ones. However, the main difficulty occurs when

the dimensionality of the problem becomes exponentially large. Then one

can face a typical NP-complete situation when it is very easy to check the
solution, but the number of such checks to find it is exponentially large. It

is not a coincidence that such hard problems as the famous traveling salesman

problem, the weighted matching problem, or the graph bipartitioning problem

can be reduced to finding the minimum of a quadratic form subject to linear

constraints. In this respect, the main advantage of quantum neural nets is

their ability to arrange a dynamical attractor of exponential dimensionality
in a ª polynomialº space. The number of iterations necessary for approaching

this attractor (they can be taken as an equivalent of ª digitalº complexity)

will not grow exponentially with the growth of the dimensionality, because

of the dynamical parallelism of evolution along each dimension.
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For a two-measurement architecture, the energy function minimized by

(57) is

H 5 1±2 p
j1 j2
i1i2

p i1
p i2

p j1
p j2

5 1±2 p
i1i2
j1 j2

p j1
p j2

p i1
p i2

5 ? ? ? etc. (103)

It follows from (103) that the tensor p12 must be symmetric with respect to

permutations of all its indices:

p
j1 j2
i1i2

5 p
i1 i2
j1 j2

5 p
i1 i2
j1 j2

5 p
j2 j1
i2i1

5 ? ? ? etc. (104)

In addition, its components must satisfy the constraints (95),

o
n

j1, j2

p
j1 j2
i1i2

5 1 for i1i2 5 1, 2, . . . , n (105)

It should be recalled that the tensor p12 is uniquely defined by the unitary

matrix U via (44).

For an l-measurement architecture, the energy function minimized by

(61) is

H 5 1±2 p
j1 ? ? ? jl
i1 ? ? ? il

p i1
p j1

? ? ? p jl
(106)

while the tensor p12.. l must be symmetric with respect to permutations of its

indices, i.e.,

p
j1 ? ? ? jl
i1 ? ? ? il

5 p
i1 ? ? ? il
j1 ? ? ? jl

5 ? ? ? etc. (107)

and its components must satisfy the constraint

o
n

j1 ? ? ? jl 5 1
p

j1 ? ? ? jl
i1 ? ? ? il

5 1 for i1 ? ? ? il 5 1, 2, . . . , n (108)

As in the two-dimensional architecture, the tensor p12.. is uniquely defined

by the unitary matrix U via (50).

Let us make some comments on the capacity of the l-measurement
quantum neural nets. For that purpose we will assume that instead of l
sequential measurements performed on the same quantum device, we have

l parallel identical quantum devices which allow one to perform all the

measurements simultaneously. Then, loosely speaking, the space occupied

by such a device will be

S1 } nl (109)

Although the number of degrees of freedom, i.e., the number of equations

in the system (61), is still equal to nl, the number of the components in the

quadratic form (106) is
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S2 5 o
l

k 5 1

C k
n 5 o

l

k 5 1

n!

k!(n 2 k!)
5 2n if l 5 n (110)

where C k
n are the binomial coefficients. Obviously, with the growth of the

dimensionality n, S2 grows exponentially faster than S1, and this leads to the

exponential ª compressionº of space occupied by the l-measurement architec-

ture of quantum neural nets. One has to recall that this ª compressionº should

be added to the original ª compressionº performed by quantum direct product
representation in the unitary device according to which

n , 2q, i.e., S2 , 22
q

(111)

where q is the number of ª classicalº degrees of freedom.
But since the capacity of neural nets, loosely speaking, is linearly propor-

tional to the number of its degrees of freedom, one can conclude that l-
measurement quantum neural nets possess an enormous capacity in compari-

son to classical neural nets.

11. UNIVERSAL GENERATOR OF STOCHASTIC PROCESSES

As shown above, the quantum neural nets can be viewed as a universal

and compact generator of stochastic processes that cannot be achieved, even

in principle, by any classical device. Indeed, it can generate multivariate

correlated or noncorrelated, Markovian and non-Markovian, linear and non-

linear stochastic processes with prescribed properties by simply changing a

quantum interference pattern without even touching the quantum hardware,
i.e., the Hamiltonian. Due to quantum direct product representation, the

quantum neural net can be implemented by utilizing exponentially smaller

resources.

One of the most important applications of simulated stochastic processes

is the Monte Carlo methods discussed in the Introduction. The second area

of application is performance of sampling experiments on a model of the
systems. In this area not only the limit probability distributions, but their

time evolutions are important as well. And in this connection, the nonlinear

stochastic processes which allow one to control the current strategy in real

time by changing the stochastic attractors and concentrating probabilities in

a certain domain (depending upon a changing objective) become very useful

in modeling the decision-making process in a game-type situation.

12. NUMERICAL SIMULATIONS

In this section we will illustrate some of the basic concepts of quantum

neural nets (QNN) by numerical simulations. They illustrate the behavior of
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a quantum neural net being used to simulate an arbitrary Markov process.

The quantum state fed into the QNN at each iteration evolves according to

the rule

| c next & 5 | M{U | c last & 1 | c init & } |

where | c init & is the initial state vector supplied to the QRN, | c last & is the last

state vector supplied to the QNN, | c next & is the next state vector that will be
supplied to the QNN, U is the unitary matrix that defines the virtual connectiv-

ity matrix of the QNN, M{. . .} is a measurement operator that projects the

state of U | c last & into some eigenstate of M, and | | denotes renormalization.

The sequence of measurement outcomes M{U | c last & } defines a Markov

process with a transition probability matrix that can be computed exactly.
For example, consider the 4 3 4 unitary matrix U defined by

1
2 .426364 2 .40965i .152799 1 .449573i

.187355 1 .25612i .377974 2 .0919836 i

.478001 2 .334466i .230266 2 .310334 i

2 .415635 1 .190776i 2 .263578 2 .635931 i

.268873 2 .52106i .262525 2 .110547i

.624798 2 .282139 i 2 .5189 1 .0924264 i

.0028144 2 .0982155i .164187 2 .688263 i

.419877 2 .0166754i .363206 2 .0920733i 2
and let the initial state | c init & be

| c init & 5 1
2 .00741589 1 .48916i

2 .12314 2 .667601i

.344441 2 .149759 i

.386876 2 .095256 i 2
The transition probability matrix for this QNN (defined by U and | c init & ),
which specifies the probability of obtaining the measurement outcome j,
given that the last measurement outcome was i, is given by

1
.579626 .00222459 .216761 .201389

.338022 .0781686 .156848 .426962

.785018 .159218 .0349651 .0207996

.471082 .225005 .28342 .0204926 2
This is certainly a true transition probability matrix, as all elements are

between 0 and 1 and the sum of the elements along any row is 1.
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Fig. 3.

In this QNN, there are four possible measurement outcomes, which we
can label arbitrarily as 0 through 3. These four outcomes correspond to the four

binary values 00, 01, 10, 11 that can be obtained by making a measurement on

the state that is generated after the unitary evolution, i.e., by measuring the

state U | c last & . The QNN defined by U and | c xinit & is predicted, according to

our theory, to have the fixed point probability distribution over states given by

(.584103 .0719151 .188539 .155444)

That is, we expect to see the measurement outcome ª 0º 0.584 of the time,

the measurement outcome ª 1º 0.072 of the time, etc. Graphically, this distribu-

tion is shown in Fig. 3.

We can see that a simulation of a QRN generates a stochastic attractor

that does indeed approach this distribution: Here is an actual sequence of

100 measurement outcomes for the QRN defined by U and | c init & :

{0,2,0,0,2,0,2,0,0,2,0,0,0,0,0,3,0,0,0,2,0,0,2,0,2,0,0,0,0,0,0,0,0,0,3,2,0,2,0,3,
0,3,2,0,0,2,0,2,0,2,0,2,0,0,0,0,0,2,1,0,2,0,0,0,0,0,3,2,3,2,1,3,2,0,0,3,1,3,1,3,0,

3,0,2,0,0,0,2,0,0,3,0,2,0,2,0,0,0,0,2,2}

Visually, the distribution of states in this experimental run is found to be as

shown in Fig. 4. Notice the similarity to the predicted distribution. With

Fig. 4.
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longer runs, the agreement with the predicted distribution becomes exact.

Moreover, a separate run of the same QRN (same U and | c init & ) yields a

different sequence of measurement outcomes.

{0,0,0,0,0,0,3,0,0,0,2,0,0,0,0,2,0,0,3,2,0,0,0,0,0,2,3,0,0,0,0,0,3,2,1,2,0,3,1,0,

2,0,2,0,2,0,0,0,0,3,2,0,2,0,0,0,2,0,0,3,1,3,0,0,0,0,0,0,0,3,1,1,2,0,0,0,0,2,0,2,0,

2,0,0,0,0,2,0,2,0,3,0,0,0,0,3,2,1,2,3,1}

Nevertheless the sequence converges to the same stochastic attractor as before:

see Fig. 5.

Fig. 5.

13. CONCLUSION

Thus, it has been demonstrated that the quantum recurrent net as an

analog device can be based upon a sequence of quantum and classical compu-

tations. During the quantum regime, a stochastic input pattern is transformed
(according to the SchroÈ dinger equation) into the output stochastic pattern of

the same dimensionality. During the following classical regime, which

includes quantum measurements and reset, the stochastic pattern is contracted

into a pattern of lower dimensionality, and this contraction is equivalent to

the performance of a sigmoid function. The combined effect of the alternating

quantum and classical computations can be described by generalized random
walk, i.e., by Markov chains in the form of the Chapman±Kolmogorov

equation. Eventually the output pattern approaches an attractor (which can

be static, periodic, or ergodic), and such attractors can be utilized for storing

certain patterns. The assignment of an appropriate unitary matrix can be

based upon the optimal choice of the time period of the regime of quantum

computations which actually represents the procedure of learning. But in
addition, the transition probability matrix can be controlled by combining

the output vector with an appropriately chosen interference vector.

Let us now summarize the advantages and limitations of quantum neu-

ral nets.
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The most obvious advantage of quantum neural nets, which actually

gave the motivation for the whole effort, is an exponential increase of their

capacity due to quantum direct product representation of unitary evolutions.
However, the price paid for this is a significant slowdown of the convergence

to attractors because of measurements and resets which must be performed

after each quantum computational step.

A less obvious, but much more fundamental advantage of quantum

neural nets is an interference between stochastic inputs as a result of quantum

superposition. Due to this interference, the stored patterns acquire a logical
structure in the sense that each combination of patterns has a qualitatively

new meaning in the same way in which combinations of letters forming

words do. This property has a very interesting philosophical consequence.

Indeed, it was always difficult to understand how biological neural nets can

learn patterns of the external world without any preliminary structure built

in to their synaptic interconnections. The experience with artificial neural
nets shows that training without a preliminary structure is exponentially

longer than that with a structure, and that poses the following question: who

created the ª firstº structure in biological neural nets which provides the ability

to learn and select useful properties in polynomial time? In other words, can

natural selection act without a ª creatorº ? The quantum neural nets may
give a positive answer to this question: the logical structure of synaptic

interconnections can be imposed by natural laws of physics, and in particular,

by quantum mechanics. Hence, if biological neural nets utilize quantum

effects in their performance, they can learn the model of the external world,

including its logical structure, in polynomial time without any preliminary

structure.
The problems of hardware implementations of quantum devices have

not been discussed in this paper. However, since quantum nets operate by

interleaving quantum evolution with measurement and reset operations, they

are far less sensitive to decoherence than other designs of quantum computers.
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